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Modified Quasilinearization Method

for Solving Nonlinear, Two-Point Boundary-Value P oblems^l

by

2	 3
A. MIELE AND R. R. IYER

Abstract. This paper presents a general method for solving nonlinear, differential

equations of the form x - ('x,, t) = 0 , 0 s t s 1, subject to boundary conditions of the

form f [x(0)] = 0 , g[x(1)] = 0, h[x(0), x(1)] = 0. Here, t is a scalar, x and ep are n-vectors,

-and t, g, h -. ,..!e p, q, r-vectors,	 -.th p + q + r n. The method is based on the consider-

ation of the performance index i, the cumulative error in the differential equations and

the boundary conditions.

A modified quasilinearization algorithm is generated by requiring the first variation

of the performance index 6P to be negative. This algorithm differs from the ordinary

quasilinearization algorithm because of the inclusion of the scaling factor or stepsize a

in the system of variations. The main property of the modified quasilinearization algorithm

is the descent property: if the stepsize a is sufficiently small, the reduction in P is

guaranteed. Convergence to the desired solution is achieved when the inequality P <- e

is met, where a is a small, preselected number.

The variation ,, per unit stepsize bx/a = A are governed by a system of n non -

homogeneous, linear differential equations subject to p separated initial conditions,q separated

1 This research was supported by the National Science Foundation, Grant No. GP-18522.
The authors are indebted to Mr. A. V. Levy for analytical and computational assistance.

2 Professor of Astronautics and Director of the Aero -Astronautics Group, Department of
Mechanical and Aerospace Engineering and Materials Science, Rice University, Houston,
Texas.

3 Graduate Student in Aero-Astronautics, Department of Mechanical and Aerospace
Engineering and Materials Science, Rice University, Houston, Texas.
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final conditions, and r mixed boundary conditions. This system is solved employing

the method of particular solutions : q + r + 1 independent solutions are combined linearly,

and the coefficic -:ts of the combination are determined so that the linear system is satisfied.

Several numerical examples are presented. They illustrate (i) the simplicity as well

as the rapidity of convergence of the modified quasilinearization algorithm 'arid (ii) the

importance of stepsize control.
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Introduction

In recent years, considerable attention has been devoted to the solution of the

r.

two-point boundary -value problem for nonhorr.iogeneous, linear differential systems.

Among the techniques available, we mention ( a) the method of adjoint variables and

(b) the method of complementary functions (Ref. 1). Methods (a) and (b) have one

common characteristic: each requires the solution of two differential systems, namely,

the original system plus the derived system; this derived system is the adjoint system

in Case ( a) and the homogeneous system in Case (b).

With particular regard to high-speed digitial computing, programming can be

made simpler if one employs the original system only. This technique, a modification

of (b), consists of combining linearly several particular solutions of the original,

nonhomogeneous system. For this reason, it has been called the method of particular

solutions ( Ref. 2). It has the following advantages with respect to .,,:he previous techniques:

(a) it makes use of only one differential system, namely, the original, nonhomogeneous

system; ( P) each particular solution satisfies the same prescribed initial conditions; and

(y) in a physical problem, each particular solution represents a physically possible

trajectory, even though it satisfies only the initial conditions and not the final conditions.

While 'Zhe method of particular solutions has been developed for linear systems, it

can also be used to solve nonlinear systems. First, quasilinearization must be employed,

and the nonlinear system must be replaced by one that is linear in the perturbation about

a nominal function ( see, for example, Refs. 3-6); to this linear system, the method of

particular solutions can be applied to find the perturbation leading to a new nominal

function; then, the procedure is employed iteratively (Ref. 7).

i^ I
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The main advantage of the ordinary quasi lincarization algorithm is simplicity and

rapidity of convergence if the nominal function is a fair approximation to the solution.

There are cases, however, where ordinary quasilinearization diverges due to the excessive 	 TT .

magnitude of the variations. This is why it is convenient to imbed the linearized system

into a more general system by means of the scaling factor a, 0 !!^ a s 1, applied to each

forcing term. The resulting algorithm is called the modified quasilinearization algorithm.

At first glance, the above imbedding procedure seems arbitrary. However, a

rigorous conceptual justification can be given through the consideration of the performance
r

index P: this is the cumulative error in the differential equations and the boundary con-
L

ditions. By computing the first variation of the functional P and requiring 8Pto be negative,	 f

one generates the modified quasilinearization algorithm. The main property of this

algorithm is the descent property: if the stepsize a is sufficiently small, the reduction in

P is guaranteed. In addition, the performance index P can also be employed as a con-

vergence criterion: the algorithm is terminated when P becomes smaller than some

preselected value.

Il
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2.	 Modified Quasilinearization

Consider a system described by the differential equation

x-cp(x,t)=0	 ,	 Ostsl	 (1)

subject to the boundary conditions

f[x(0)] = 0 , g[x(1)) = 0 , h[x(0), x; 1)J = 0	 (2)

Here, x and cp are n-vectors, f is a p-vector, g a q-vector, and h an r-vector, with

p + q + r = n. The time t, a scalar, is the independent variable; without loss o f generality,

the prescribed initial time is t = 0 and the prescribed final time is t = 1. The dot denotes

a derivative with respect to t.

It is assumed that (a) the first derivative of the function cp with respect to the vector x

exists and is continuous and (b) the first derivatives of the functions f, g, h with respect

to the vectors x(0) and x(1) exist and are continuous. It is also assumed that a solution of

Eqs. (1) -(2) exists. The problem is to find the continuous vector function x(t) which solves

Eqs. (1)-(2).

2. 1. Performance Index. In general, the system (l)-(2) is nonlinear, so that

approximate methods must be employed. In this connection, consider the class of

continuous functions x(t) not necessarily satisfying Eqs. (1)-(2). For these functions, let

the performance index P be defined as 

1
P = j(j  - T)T(x - cp)dt + (fTf + g g +h Th )

0

The scalar functional P measures the cumulative error in the differential equation (1) and

the boundary conditions (2); therefore, P = 0 for any x(t) satisfying Eqs. (1)-(2) and

4 The superscript T denotes the transpose of a matrix.

(3)

I
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P > 0 otherwise. When approximate methods are used, they must ultimately lead to

a state x(t) such that

P.1e

where a is a small, preselected number.

2. 2. Modified Quasilinearization. Here, we present; a modification of the quasi-

linearization algorithm which has a descent property in the performance index P. Con-

sider a nominal function x(t) acid a varied function x(t) such that

540 = x(t) + WO

where Ax(t) denotes the perturbation of x at a constant station t. The passage from the

nominal function to the varied function causes the performance index P to change. To

first order, we see that

1
6P = 

2JO
(x - CP)T 6(x - ep)dt + 2(fT 6f + gT6g + h  8h)

where the symbol 6(... ) denotes the first variation.

Next, consider the system of variations defined by

8(X-P)= -CL(3(-CP)

r

(4)

(5)

(6)

(1)

and

6f = roof , 6g = -ag , 6h = -Ot h
	

(8)

where a is a scaling factor (or stepsize) in the range

0 s a s 1	 (9)
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Consequently, the first variation of the performance index P becomes

6P = -2aJoi CD)Tep)dt - 2h(ff + gTg + hTh)	 (10)

and, in the light of the definition (3), is equivalent to

6P = -2aP	 (11)

Note that, for any nominal curve x(t) not satisfying Eqs. (1)-(2)1,

P>0	 (12)

Therefore, for a positive, one has

6P < 0	 (13)

This is the basic descent property of the algorithm defined by Eqs. (7) -(8); it guarantees that,

if a i s sufficiently small,

N
P <P
	

(14)

2.3. System of Variations. To first order, the changes of the functions appearing

in Eqs. (7) are related to the change Ax(t) as follows:5

6(x-cp)=d - cpx Ax	 0sts1	 (15)

5 The matrix cpx appearing in Eq. (15) is defined so that its ith column is the gradient
	

I N I

of the ith scalar component of cp with respect to the vector x. Analogous definitions hold
for the matrices appearing in Eqs. (16).
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and

6f = f(0) Lx(n)

6g=gx(1),x(1)	 (16)

6h= h  Lx(0) + hT Ax(1)

where the matrix cpx is n x n, the matrix X(0) is n x p, the matrix 
gX(1) 

is n x 1, and

the matrices hx(0) and hx(1) are n x r. Consequently, Eqs. (7)-(8) can be rewritten as

	

Lax - cpx Ax + a(x - cp) = 0
	

Osasl
	 (17)

and

f 	 LX(0) + of = 0

	

9TLx(1) + ag = 0 	 (18)

hLx(0)+h TG) dx(3)+ah=0

For a given value of a, Eq. (17) is equivalent to n scalar differential equations and Eqs. (18)

are equivalent to p + q + r = n scalar boundary conditions. These equations and boundary

conditions are linear and nonhomogeneous in the n components of the vector 6X(t). The

resulting algorithm is called modified quasilinearization algorithm.

For a= 1, Eqs. (17)-(18) become identical with those of ordinary quasilinearization

( Refs. 3-6), that is, the equations obtained by linearizing Eqs. (1) -(2) about the nominal

function x(t). While modified quasilinearization exhibits the descent property (13)-(14), this

is not necessarily the case with ordinary quasilinearization. This means that, if &js.

(17) -(18) are employed with a.= 1, the performance index P may actually increase when

passing from the nominal function x(t) to the varied function R(t).

f

L

z
n
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2.4. Coordinate Transformation. To simplify the problem, we introduce the

auxiliary variable

	

A = 6 x /(Y
	 (19)

and rewrite Eqs. (17)-(18) in the form

	

A- cpXA+k —cp=0	 Ostsl
	

(20)

and

f 	 A(0) + f = 0

	

gT A(1)+g=0
	

(21)

h 	 A(0) + h  1) A(1) + h = 0

The differential system (20) -(21) is linear and nonhomogeneous in the function A(t) and 	 it

can be solved without assigning a value to the stepsize a. With A(t) known (see Section

2. 5) and the stepsize a specified (see Section 2.6), the correction ax(t) is obtained from

(19), and the varied function R(t) is computed from (5).

2.5. Integration Technique. Assuming that p z?! q, we integrate the previous differential

system q + r + 1 times using a forward integration scheme in combination with the method

of particular solutions (Ref. 2). In each integration, we specify the initial condi':ions6

Ai(0) = Sij , i = 1,2,...,q+ r+ 1 , j = 192,...,q+r	 (22)

6 The subscript i denotes a particular integration. The superscript j denotes a particular
component of the vector A.
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where the Kronecker delta. 
6 
i is such that

Gil - 1
	 i = j

(23)

6i j = 0	 ,	 1 ^ j

Thera, we compute the missing initial conditions

A1(0) , i = I t 2,...,q+ r+ 1 , j = q+ r+1, q+r+2, ... ,n	 (24)

by solvi. a Eq. (21-1).After performing the forward integrations ,we obtain the functions

Ai = Ai(t) , i = 1, 2.... , q + r + 1	 (25)

each of which satisfies (20) and ( 21-1) but not necessarily ( 21-2) and ( 21-3).

Next, we introduce the q + r + 1 undetermined, scalar constants k  and form the

linear combination

q+r+l

A(t) .^	 kiAi(t)	 (26)
i=1

Then, we inquire whether, by an appropriate choice of the constants ki , this linear

combination can satisfy Eqs. (20)-(21). By simple substitution, it can be verified that

the linear combination ( 26) satisfies the differential equation ( 20) and the separated initial

condition (21 - 1) providing

r+l

	

ki =1	 (27)
i=1

Finally, the function (26) satisfies the separated final condition (21-2) and the mixed

boundary -:ondition (21-3) providing



1
1
t

i
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r+1

	

i=1	
I x(1) a.

(28)

nr+l
k 

[hT A
•( 0) + hT. A•( 1 )) + h = 0

	1 	
i x(0) i	 x(1) i t̂i

The linear system (27)-(28) is equivalent to q + r + 1 scalar equations, in which the

unknowns are the q + r + 1 scalar constants ki . After the constants ki are known, the

function A(t) is computed with (26). In this way, the two-point boundary-value problem

is solved.

2.6. Determination of the Stepsize. After combining Eqs. (5) and (19), we obtain

the relation

	

R(t) = x(t) + rrA(t)	 (29)

Since the function x(t) is given and the function A(t) is known by solving the linearized,

two-point boundary-vable problem, Eq. (29) yields a one-parameter family of solutions,

the parameter being the stepsize a. For this one-parameter family, the performance

index P becomes a function of the form

P = P(a)	 (30)

At a = 0, the slope of this function is negative and is given by

P (0) = -2P(0)	 (31)
a.

i

'1
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The function (30) exhibits a relative minimum with respect to a, that is, a point

where

	

Pry(a) =	 0
	

(32)

This point can be determined by means of a one-dimensional search (for example, using

quadratic interpolation, cubic interpolation, or quasilinearization). Ideally, this procedure

should be used iteratively until the modulus of the slope satisfies the following inequality:

	

IPa(a)I s	 0
	

(33)

where 0 is a small, preselected number.

Since the rigorous determination of a takes time on a computer, one might renounce

solving Eq. (32) with a particular degree of precision and determine the stepsize in a

noniterative fashion. To this effect, we first assign the value

	

a= 1	 (34)

to the stepsize; this corresponds tl^ full quasilinearization of Eqs. (1) -(2) and is the

value which would solve Eq. (32) exactly, should Eqs. (1)-(2) be linear. Of course, the

stepsize is acceptable only if

	

P(a) < P(0)	 (35)

Otherwise, the previous value of a must be replaced by some smaller value in the range (9)

(for example;, using a bi.,.ection process) until. Ineq. (35) is met. This is guaranteed by

the descent property 113)-(14).



0

If

13
	

AAR -79

2.7. Summary of the Algorithm. In the light of the previous discussion, we

summarize the modified quasilinearization as follows:

(a) Assume a nominal function x(t).

(b) Along the interval of integration, compute the vector x - ep and the matrix cpx.

On the boundary, compute the vectors f, g, h and the matrices 
fx(0)' 

9x(1)' hx(0)' hx(1)'

(c) Solve the linearized two -point boundary -value problem (20) -(21) using the forward

integration scheme of Section 2.5.

(d) Consider the one-parameter family of the solutions (29) and perform a one-

dimensional search on the function (30); specifically, perform a bisection process on

a (starting from a = 1), and continue the process until Ineq. (35) is satisfied.

(e) Once the stepsize a is known, compute the varied function R(t) from (29).

(f) With the varied function known, the iteration is completed. The varied function

X(t) becomes the nominal function x(t) for the next iteration. That is, return to (a) and

iterate the algorithm.

(g) The algorithm is terminated when the stopping condition (4) is satisfied.

I ', 1

Y^
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3. Numerical Examples 

In order to illustrate the theory, several numerical examples were developed using

a Burroughs B-5500 computer and double-precision arithmetic. The algorithm was

programmed in FORTRAN IV. The interval of integration was divided into 100 steps for

the first five examples, 200 steps for the sixth example, and 500 steps for the seventh

example. The differential system (20)-(21) was integrated using Hamming's modified

predictor-corrector method with a special Runge-Kutta procedure to start the integration

routine ( Ref. 8). The definite integral P was computed using Simpson's rule.

Convergence was defined as follows:

P s 10 -16	 (36)

and the number of iterations at convergence N * was recorded. Conversely, nonconvergence

was defined by means of the inequalities

(a) N Z 40	 (37)

or

(b) NS z 10	 (38)

or

(c) M .^t 0.4 x 1069	 (39)

Here, N is the iteration number, N S is the number of bisections of the stepsize a (starting

from a = 1) required to satisfy Ineq. (35), and M is the modulus of any of the quantities

7 For simplicity, the symbols employed in this section denote scalar quantities.
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employed in the algorithm. Satisfaction of Ineq. (37) indicates divergence or extreme

slowness of convergence; in turn, satisfaction of Ineq. (38) indicates extreme smallness

of the displacement Ax; finally, satisfaction of Ineq. (39) indicates exponential overflow

for the Burroughs B-5500 computer: the computer program is automatically stopped.

Example 3.1. Consider the differential equations

a = 3y , y = -3 sin x	 (40)

subject to the boundary conditions

x(0) = 0 , x(1) = 3	 (41)

In this problem, n = 2 , p = 1 , q = 1, r = 0. Since q + r + 1 = 2, two particular solutions

are needed per iteration.

Assume the nominal functions

x(t) = 3t , y(t) = 0
	

(42)

which are consistent with the boundary conditions (41) but are not consistent with the dif-

ferential equations (40). Starting with these nominal functions, we employ the algorithm

of Section 2. Convergence to the solution is achieved in N * = 4 iterations.. The numerical

results are presented in Tables 1-2, where N denotes the iteration number8.

"In Tables 1-2 as well as subsequent tables, all data are truncated rather than rounded-off.

1

i
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Table 1. Stepsize and performance index (Example 3.1).

N a	 P

0 —	 0.1 x 102

1 1	 0.7 x 100

2 1	 0.1 x 10-2

3 1	 0.1 x 10-7

4 1	 0.4 x 10-18
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Table 2.	 Converged solution (Example 3. 1, N = 4).

t x y

0.0 0.0000 x 100 0.2011 x 101

0.1 0.5944 x 100 0.1923 x 10 1 	q

0.2 0.1140 x 10 1 0.1696 x 101

0.3 0.1606 x 10 1 0.1404 x 101

0.4 0.1983x101 0.1114x101 F

0.5 0.2278 x 101 0.8624 x 100

0.6 0.2505 x 1.0 1 0.6596 x 100

0.7 0.2679 x 101 0.5042 x 100

0.8 0.2812 x 10 1 0.3895 x 100

0.9 0.2916 x 10 1 0.3080 x 100

1.0 0.3000 x 10 1 0.2537 x 100
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Example 3.2. Consider the differential equations 

x = 2rry , y = - 2rr[6x + x 2 + co s(2rrt) ] 	 (43)

subject to the boundary conditions

X( 0) = x(1) , y(0) = y(1)	 (44)

In this problem, n = 2 1, p = 0 1 q = 0, r = 2. Since q + r + 1 _ 3, three particular solutions

are needed per iteration.

Assume the nominal functions

X(t) = 0 , y(t) = 0
	

(45)

which are consistent with the boundary conditions (44), but are not consistent with the

differential equations (43). Starting with these nominal functions, we employ the algorithm

of Section 2. Convergence to the solution is achieved in N * = 3 iterations. The numerical

results are presented in Tables 3-4, where N denotes the iteration number.

This example has been considered in Ref. 9.
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Table 3. Stepsize and performance index (Example 3.2).
	 I

N	 a	 P

0	 —	 0.1 x 102

1	 1	 0.2 x 10-1

2	 1	 0.2 x 10-6

3	 1	 0.3 x 10 16

5111

#	 0
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Table 4. Convcr ed solution ( Example 3. 2 9, N = 4).

t x y

0.0 -0.2134 x 100 -0.7650 x 10-7

0.1 -0.1690 x 100 0.1351 x 100

0.2 -0.5780 x 10- 1 0.2037 x 100

0.3 0.6730 x 10 -1 0.1802 x 100

0.4 0.1560 x 100 0.9693 x 10-1

0.5 0.1865 x 100 -0.1049 x 10 -7

0.6 0.1560 x 100 -0.9693 x 10-1

0.7 0.6730 x 10 -1 -0.1802 x 100

0.8 -0.5780 x 10- 
1

-0.2037 x 100

0.9 -0.1690 x 100 -0.1351 x 100

1.0 -0.2134 x 100 -0.7650 x 10 -7

IP
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Example 3.3. Consider the differential equations

1	 2x=2x 2y 	 y=- 2xy

subject to the boundary conditions

x(0)+x(1) -e - 1 =0 , y(0) -x(1)y(1)=0

where e = 2.71828. In. this problem, n = 2, p = 0, q = 0, r = 2. Since q + r + 1 = 3, three

particular solutions are needed per iteration.

Assume the nominal functions

x(t) = 2 ,	 y (t) = 1
	

(48)

which are not consistent with (46)-(47). Starting with these nominal functions, we employ

the algorithm of Section 2. Convergence to the solution is achieved in N. = 5 iterations.

10
The numerical results are presented in Tables 5-6, where N denotes the iteration number.

10 Thesolution of problem (46)-(47) is not unique. 1 Another solution is characterized by
constant values of x and y, specifically, x(t) = ,(e + 1) , y(t) = 0.

(46)

(47)

'fl

%I
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Table 5. Stepsize and performance index (Example 3.3).

N a	 P

0 —	 0.6 x 101

1 1	 0.8 x 100

2 1	 0.1 x 10-1

3 1	 0.1 x 10-6

4 1	 0.8 x 10-15

5 1	 0.5 x 10-32
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Table 6.	 Converged solution (Example 3.3, N = 5).

t x y

0.0 0.1000 x 10 1 0.2000 x 101

0.1 0.1105x101 0.1809x101

0.2 0.1221x101 0.1637x101

0.3 0.1349x101 0.1481x101

0.4 0.1491 x 10 1 0.1340 x 101

0.5 0.1648x101 0.1213x101

0.6 0.1822x101 0.1097x101

0.7 0.2013 x 10 1 0.9931 x 100

0.8 0.2225 x 10 1 0.8986 x 100

0.9 0.2459 x 10 1 0.8131 x 100

1.0 0.2718 x 10 1 0.7357 x 100

AAR -79

'	 1
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Example 3.4. Consider the differential equations

=y	 y= z , z=-z2uw/6

(49)

u = w	 w = -yw3/2

subject to the boundary conditions

x(0)=1 , u(0)=1	 w(0)=-1	 x(1)=16 , u(1)=1/2
	

(50)

In this problem, n = 5 , p = 3 , q = 2 , r = 0. Since q + r + 1 = 3, three particular

solutions are needed per iteration.

Assume the nominal functions

X(t) == 1 + 15t	 y(t) = 0	 z(t) = 0

(51)

u(t) = 1 - t/ 2 , w(t) = -1

which are consistent with the boundary conditions (50) but are not consistent with the

differential equations (49). Starting with these nominal functions, we employ the algorithm

of Section 2. Convergence to the solution is achieved in N * = 11 iterations. The numerical

results are presented in Tables 7-8, where N denotes the iteration number.



r
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Table 7. Stepsize and performance index (Example 3.4).

N a P

0 — 0.2 x 103

1 1/16 0.2 x 103

2 1/8 0.1 x 103

3 1/4 0.1 x 103

4 1/2 0.4 x 102

5 1/2 0.2 x 102

6 1 0.1 x 101

7 1/2 0.3x100

8 1/2 0.1x100

9 1 0.2 x 10-1

10 1 0.2 x 10 - 8

11 1 0.1 x 1021

AAR -79
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Table 8. Converged solution ( Example 3. 4, N = 11).

t x y z u w

0.0 0.1000 x 10 1 0.4000 x 10 1 0. 1200 x 10' 0.1000 x 10 1 -0.1000 x 101

0.1 0.1464 x 10 1 0.5324 x 10 1 0.1452 x 102 0.9090 x 100 -0.8264 x 100

0.2 0.2073 x 10 1 0.6912 x 10 1 0.1728 x 10 2 0.8333 x 100 -0.6944 x 100

0.3 0.2856 x 10 1 0.8788 x 10 1 0.2028 x 10 2 0.7692 x 100 -0.5917 x 100

0.4 0.3841 x 10 1 0.1097 x 10 2 0.2352 x 102 0.7142 x 100 -0.5102 x 100

0.5 0.5062 x 10 1 0.1350 x 102 0.2700 x 102 0.6666 x 100 -0.4444 x 100

0.6 0.6553 x 10 1 0.1638 x 102 0.3072 x 102 0.6250 x 100 -0.3906 x 100

0. 7 0.8352 x 10 1 0.1965 x 10 2 0.3468 x 102 0.5882 x 100 -0.3460 x 100

0.8 0.1049 x 102 0.2332 x 102 0.3888 x 10 2 0.5555 x 100 -0.3086 x 100

0.9 0.1303 x 102 0.2743 x 102 0.4332 x 102 0.5263 x 100 -0.2770 x 100

1.0 0.1600 x 10 2 0.3200 x 102 0.4800 x 102 0.5000 x 100 -0.2500 x 100
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Example 3.5. Consider the differential equations

x = l0y , 3► = IOz	 _ -5xz	 (52)

subject to the boundary conditions

X(0) = 0 , y(0) = 0	 y(1) = 1	 (53)

In this problem, n = 3, p = 2 0 q = 1, r = 0. Since q + r + 1 = 2, two particular solutions

are needed per iteration.

Assume the nominal functions

x(t) = 0	 y(t) = t	 z(t) = 0	 (54)

which are consistent with the boundary conditions (53) but are not consistent with the

differential equations (52). Starting with these nominal functions, we employ the

algorithm of Section 2. Convergence to the solution is achieved in N * = 6 iterations.

The numerical results are presented in Tables 9-10, where N denotes the iteration

number.

^: 1



N	 a	 P

0	 — 0.3 x 102

1	 1 0.1 x 101

2	 1/8 0.2 x 100

3	 1 0.3 x 10-1

4	 1 0.5 x 10-4

5	 1 0.2 x 10-9

6	 1 0.2 x 10-20

28

Table 9. Stepsize and performance index (Example 3. 5).
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Table 10.	 Converged solution (Example 3.5, N = 6).

t x y z

0.0 0.0000 x 100 0.0000 x 100 0.3320 x 100

0.1 0.1655 x 100 0.3297 x 100 0.3230 x 100

0.2 0.6500 x 100 0.6297 x 100 0.2667 x 100

0.3 0.1396 x 10 1 0.8460 x 100 0.1613 x 100

0.4 0.2305 x 10 1 0.9555 x 100 0.6423 x 10-1

0.5 0.3283 x 10 1 0.9915 x 100 0.1590 x 10-1

0.6 0.4279 x 10 1 0.9989 x 100 0.2402 x 10-2

0.7 0.5279 x 10 1 0.9999 x 100 0.2201 x 10-3

0.8 0.6279 x 101 0.9999 x 100 0.1224 x 10-4

0.9 .0.7279 x 10 1 0.9999 x 100 0.4130 x 10-6

1.0 0.8279 x 10 1 0.1000 x 10 1 0.8413 x 10 -8

i
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Example 3.6. Consider the differential equations 11

x = 13y, , y = 13z , z = -20. 15xz + 1.3y 2 - 13u2 + 2.6y + 13

(55)

d = 13w , w = -20. 15xw + 14.3yu + 2.6u - 2.6

subject to the boundary conditions

L a	

X(0) = 0 , Y(0) = 0 ,	 u(0) = 0 , y(1) = 0 , u(1) = 1
	

(56)

In this problem, n = 5, p = 3 , q = 2 , r = 0. Since q + r + 1 = 3, three particular

solutions are needed per iteration.

Assume the nominal functions

x(t) = 0	 y(t) = 0 , z(t) = 0 , u(t) = t , w(t) = 0
	

(57)

which are consistent with the: boundary conditions (56) but are not consistent with the

differential equations (50). Starting with these nominal functions, we employ the algorithm

of Section 2. Convergence to the solution is achieved in N * = 6 iterations. The numerical

results are presented in Tables 11-12, where N denotes the iteration number.

11
This example, which involes unstable differential equations, was considered in Ref. 10.
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Table 11. Stepsize and performance index (Example 3.6).

N a P

0 — 0.9 x 102

1 1/2 0.3x102

2 1/2 0.8 x 101

3 1 0.4 x 10-1

4 1 0.6 x 10-4

5 1 0.5 x 10-10

6 1 0.3 x 10-22
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Table 12. Converged solution ( Example 3.6, N = 6).

t x y z u w

0.0 0.0000 x 100 0.0000 x 100 -0.9663 x 100 0.0000 x 100 0.6529 x 100

0.1 -0.5028 x 100 -0.5802 x 100 -0.7188 x 10- 
1

0.6971 x 100 0.4220 x 100

0.2 -0.1215 x 10 1 -0.4603 x 100 0.1945 x 100 0.1100 x 10 1 0.2036 x 100

0.3 -0.1631 x 10 1 -0.1744 x 100 0.2210 x 100 0.1247 x 10 1 0.3249 x 10-1

0.4 -0.1688 x 10 1 0.7033 x 10 -1 0.1443 x 100 0.1213 x 10 1 -0.7189 x 10-1

0.5 -0.1506 x 10 1 0.1844 x 100 0.3000 x 10 -1 0.1093 x 101 -0.1002 x 100

0.6 -0.1270 x 10 1 0.1602 x 100 -0.5755 x 10
-1

0.9815 x 100 -0.6490 x 10-1

0.7 -0.1120 x 10 1 0.6614 x 10 -1 -0.7534 x 10 -1 0.9334 x 100 -0.1024 x 10-1

0.8 -0.1091 x 10 1 -0.1365 x 10 -1 -0.4303 x 10 -1 0.9447 x 100 0.2223 x 10-1

0.9 -0.1133 x 10 1 -0.4258 x 10 -1 -0.1453 x 10 -2 0.9774 x 100 0.2352 x 10-1

1.0 -0.1173 x 10 1 -0.1508 x 10 -20 0.9405 x 10 -1 0.1000 x 101 0.1765 x 10-1

1
1
1
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Example 3.7. Consider the differential equations 12

X =U , ^ =W

d = 2w+ x , *= -2u+f
Y

where

f = (x2 + y 2)/2 + (1 - µ)/ r + N/P + p( I - µ)/2

r =,/[(x - N) 2 +Y2 1 . P = ^/I(x + 1 - µ)2+y2)

and where µ = 0.012. These equations are subject to the boundary conditions

x(0)=-0.2 , y(0)=-0.1 , x(1)=-1.2 , y(1)=0

In this problem, n = 4 , p = 2 , q = 2, r = 0. Since q + r + 1 = 3, three particular

solutions are needed per iteration.

Assume the nominal functions

X( t ) = -0. 2 - t , y(t) = -0.1 + 0. It

U(t) = -1	 , w(t) = 0.1

which are consistent with the boundary conditions (60) but are not consistent with the

differential. equations ( 58). Starting with these nominal functions, we employ the algorithm

of Section 2. Convergence to the solution is achieved in N * = 7 iterations. The numerical

results are presented in Tables 13-14, where N denotes the iteration number.

12 Thisexample refers to the restricted three-body problem (Ref. 11).

(58)

( 59)

(60)

(61)
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Table 13. Stepsize and performance index ( Example 3.7).

N	 a	 P

0	 — 0.6 x 102

1	 1/4 0.5 x 102

2	 1/64 0.5 x 102

3	 1/8 0.4 x 102

4	 1 0.3 x 100

5	 1 0.6 x 10-5

6	 1 0.5 x 10-13

7	 1 0.2 x 10-29

AAR -79
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Table 14. Converged solution (Example 3.7, N = 7).

t

t x y u w

0.0 -0.2000 x 100 -0.1000 x 100 -0.1847 x 101 -0.17 89 x 101

0.1 -0.3517 x 100 -0.2367 x 100 -0.1339 x 10 1 -0.1039 x 101

0.2 -0.4788 x 100 -0.3175 x 100 -0.1222 x 10 1 -0.6008 x 100

0.3 -0.5980 x 100 -0.3604 x 100 -0.1164 x 10 1 -0.2688 x 100

0.4 -0.7118x100 -0.3730x100 -0.1109x101 0.8213x10 -2

0.5 -•0.8195 x 100 -0.3,599 x 100 - 0.1042 x 10 1 0.2497 x 100

0.6 -0.9196 x 100 -0.3240 x 100 -0.9576 x 100 0.4645 x 100

0.7 -0.1010 x 10 1 -0.2677 x 100 -0.8520 x 100 0.6572 x 100

0.8 -0.1089 x 10 1 -0.1932 x 100 -0.7207 x 100 0.8295 x 100

0.9 -0.1153 x 10 1 -0.1027 x 100 -0.5577 x 100 0.9739 x 100

1.0 -0.1200 x 10 1 0.0000 x 100 -0.3719 x 100 0.1073 x 101
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4.	 Remarks

The following remarks are pertinent to the previous theoretical development.

Remark 4. 1. If the stepsize is set at the constant value a = 1, the modified

,;uasilinearization algorithm of Section 2 reduces to the ordinary quasilinearization algorithm.

While modified quasilinearization exhibits the descent property (13)-(14), this is not

necessarily the case with ordinary quasilinearization. Therefore, in ordinary quasi-

linearization, the performance index P may actually increase when passing from the

nominal function x(t) to the varied function x(t).

With reference to the examples of Section 3, computer runs were made employing

both modified quasilinearization and ordinary quasilinearization: in Table 15, the

number of iterations at convergence N * is indicated and, as the table shows, the experi -

mental evidence is in favor of modified quasilinearization. It is emphasized that the

above conclusion was obtained through particular examples and that, consequently, the

subject requires further investigation.

Remark 4. 2. The fundamental property of the modified quasilinearization algorithm

is the descent property (13) -(14). This local property guarantees the decrease of the

performance index P when passing from the nominal function x(t) to the varied function K(t).

However, it does not guaranteee convergence; that is, it does not guarantee that P - ► 0 as

N	 This is due to the fact that convergence depends on the analytical nature of the

functions cp, f, g, h and on the nominal function x(t) chosen in order to start the algorithm.
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Table 15. Number of iterations for convergence.

N*

a sl a=1

Example 3.1 4
i

4	 r

Example 3.2 3 3

Example 3.3 5 5	 G^

I
Example 3.4 11 Nonconvergence (c)

Example 3.5 6 8

Example 3.6 6 Noncorzvergence (c)

Example 3.7 7 5

^ : I

r
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5.	 Discussion and Conclusions

In this paper, a general method for solving nonlinear, two-point boundary-value

problems is presented; it is assumed that the differential system has order n and is

subject to p separated initial conditions, q separated final conditions, and r mixed boundary

conditions, with p + q + r = n. The method is based on the consideration of the performance

index P, the cumulative error in the differential equations and the boundary conditions.

A modified quasilinearization algorithm is generated by requiring the first variation

of the performance index 6P to be negative. The algorithm has the form R(t) = x(t) + cLA(t).

Here, a, 0 < a 1, is the stepsize and the function A(t) is obtained by solving a system

of n differential equations subject to p separated initial conditions, q separated final

conditions, and r mixed boundary conditions. In general, the differential equations and

the boundary conditions are linear and nonhomogeneous. This system is solved employing

the method of particular solutions: q + r + 1 independent solutions are combined linearly,

and the coefficients of the combination are determined so that the linear system is

satisfied.

The main property of the modified quasilinearization algorithm is the descent property:

if the stepsize a is sufficiently small, the reduction in P is guaranteed. Not only is P

employed as a guide during progression of the algorithm, but also as a convergence

criterion: the algorithm is terminated when the performance index P becomes smaller

than some preselected value.

Several numerical examples are presented; they illustrate (i) the simplicity as well

as the rapidity of convergence of the algorithm and (ii) the importance of stepsize control.
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